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ABSTRACT

This paper describes a cell averaging method for the Chebyshev approximations of first

order hyperbolic equations in conservation form. We present formulas for transforming

between pointwise data at the collocation points and cell averaged quantities, and vice-

versa. This step, trivial for the finite difference and Fourier methods, is nontrivial for the

global polynomials used in spectral methods. We then prove that the cell averaging methods

presented are stable for linear scalar hyperbolic equations and present numerical simulations

of shock-density wave interaction using the new cell averaging Chebyshev methods.
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1 Introduction

In this paper we introduce a new spectral technique for the numerical solution of nonlinear

hyperbolic equations. This technique, as almost every modern finite difference scheme for

shock computations, is based on the cell averaged form of the equations. This is essential for

finite difference shock capturing techniques and it is our experience that it plays an essential

role in a successful spectral simulation of problems that involve shock waves [1].

Consider the nonlinear hyperbolic equation

U, + F_(U) = O, z • [-1,1] (I.I)o)= Uo(x),

with appropriate boundary conditions.

The cellaveraged form of (1.1)isobtained by integrating(1.1)between any two points

-1 < a < b < i to get

0 1 [b 1
0 0 = U(z)dz -Ot Otb - a b - a

(F(U(b))- F(U(a))). (1.2)

Let _(x, t) be an approximation to _(z, t) at time t. Following Harten [4] we express the

approximation to O(z,t + r) by

 (z,t + r) = AE(t)7 (. (1.3)

where ¢4 is the cell averaging operator and E(t) is the exact time evolution operator corre-

sponding to (1.1). Throughout the paper we will not distinguish between 7£(.; fi) and T£fi.

The operator 7£(.; _) is of extreme importance, it represents the way we reconstruct u from its

given cell average values _#_½ - 1 j'_/-' u(z)dz, where {z#}j_l are the grid points. Forzj_l-xj

finite difference schemes u is a piecewise polynomial of low degree, so that the reconstruction

itself is simple. It becomes complicated only if one imposes also the requirement that the

reconstruction should be essentially nonoscillatory. In [1] we have presented an essentially

non-oscillatory Fourier method based on the cell averaging formulation (1.2). In that case



the transformations betweenthe cell averages and the point values are simple and can be

carried out efficiently by the Fast Fourier Transformations (FFT). This can be attributed to

the fact that the boundary conditions are periodic and that the cell average of a trigonomet-

ric function is proportional to the function itself. However, for Chebyshev methods, the cell

averaging operation (denoted by the operator M) is not simple nor is 7_(. ;_). As a matter of

fact not only the formulation but also the implementation of ._. and T_ is not straightforward.

In this paper we formulate the cell averaging technique for the Chebyshev method. We

will discuss its stability for linear problems and show an example of its applicability to

nonlinear systems of equations by simulating the problem of shock-density wave interaction.

The cell averaging formulation is an essential part of the numerical code.

The outline of the paper is as follows: In Section 2 we show how to reconstruct efficiently

point values of a polynomial from its cell averages and vice versa.In Section 3 we introduce

the new numerical technique and show its stability for linear problems. Section 4 is devoted

to numerical results obtained by using the new method.

2 Cell Averages and Point values

In this section we will discuss the cell averaging operator .,4 and the reconstruction operator

T_ in the context of the Chebyshev methods. In these methods the approximations are

taken from the space of polynoirdals of degree N. It is therefore clear that ,4 and T_, when

restricted to the polynomial space, can be expressed as matrices A N and RN. We will give

the explicit formulas for these matrices. We start by discussing the operator A.

Assume that f(z) is in Cr[-1, 1], r > 0. Let xj = cos (L_), 0 _< ] < N be the Chebyshev-

Lobatto points in [-1,1]. For later use, define xj_½ - cos(_), 1 _< ] <__N. The cell

averaged function f(z) of f(_:)is defined as

i [h2(.)
/(X) = v_/ -_-: h2(x ) - hl(x ) dht(z) /(_)dx for -1 < x < 1, (9..1)
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where

A_

h,(x) = cos(cos-1x- _),

h_(_) = cos(cos-1• + _),
71"

A0 - --
N"

The reason for the definition in (2.1) is that

(2.2)

1 /:i-1
/(Xj__)- XJ -I --=J "'$ f(z)dz, for 1 _< j < N. (2.3)

As stated before, we are interested in ,4 operating in a polynomial space. In Lemma 1,

we show that the result of ,4 on a polynomial is still a polynomial of the same degree.

Lemma 1 LetUh(z) = 1 ,i-/.i-T_+l(Z), k > O, be the second kind of the Chebyshev polynomials.

Then

where

ok(x)= `4uk=_u_(x), (2.4)

sin(k + 1)_ (2.5)
ak = (k + 1)sin -_'

Proof: SubstitutingUk(z) in the righthand sideof (2.1)_nd making the transformation

z = cos 0, 0 _< 0 _< 7r, we have

cos(cos-'• - %) ,¢_(:o.-.,-V)

,_(k+a)s
Since Tk(x) = cos (k0),then Uk(x) = (k+,),insand therefore

rA(_)d--.

0_(_)= 1 ].o+-_
2(k+ 1)sin-_ sin0J,-_ sin(k+ 1)od0

1 , ,cos (k + 1)8 o+-_
2(k+ 1)sin-_ sin0(-_) _q: i o--V

sin(k 4- 1)--_ ( 1 sin(k 4- 1)0_

(k+ 1)sin-_ _,k+ 1 _nO ]'
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i.e,

_(x) =_u_(_).

Q.E.D.

/_From Lemma 1 one gets

Corollary 1

same order.

The cell averaged function of any polynomial of order N is a polynomial of the

Proof: any polynomial of degree N has the expression

N

f(_)= _ a_U_(_),
k=0

where ak are constants.

Therefore, by Lemma 1

(2.6)

N

k=O

Q.E.D.

Thus, Lemma 1 gives explicitly the eigenvalues ak of the matrix AN (the restriction of

.A to polynomials of degree N). These eigenvalues are uniformly bounded from above and

below, in fact

2 7r

- _< ak _< 2' 0 < k < N. (2.8)
7r

If f(x) is a polynomial of degree N,, then it is uniquely determined by its values f(xj), j =

0,..., N. So theoretically f(zj_½), j = 1,.., N can be determined. Therefore the transfor-

marion from f(x#), j = 0,...,N to/(z#_½), j = 1,...,N is well defined and we only need

to address the issue of its efficient implementation.

In general it is known that
N

f(x) = E a_Tk(_),
k=O

(2.9)
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where

ak -" _ f(xj)Tk(_j),

= e_=2, _h = lifk_0orN. (2.1o)

Alternatively
hr

f(_) =_ b_Uk(_),
k=0

(2.11)

bk ak
=y, k=N-lor N,

1
bk = z(_kak - ak+_), 0 < k < N- 2

Z-
(2.12)

and therefore by corollary 1
N

f(_) = Z: _bkU_(_). (2.13)
k=O

Now {](xj_½)}_¢=l are obtained by substituting xj_½ in (2.13) (this can be carried out

using the FFT).

We note that equations (2.9)- (2.13) describe how to get the vector f(xj_½), j = 1,..., N

from the vector f(z_), i = 0,..., N. Denote by AN the N x (N + 1) matrix defined by this

transformation. We note that AN can be written explicitly. In fact the polynomial f(x) has

an unique representation as

where

hr

f(x) = _ f(xi)gi(x),
_=0

gj(=)= (1- =')T_(=)(-1)_+1 2 _ Tk(_AT,(=)
k=O

(2.14)

with ek defined in (2.10).

It follows upon substituting (2.14)in (2.1) and using the fact that _'0(x) - Uo(x), Tl(x) =

2axU_(x) and _'k(x) = ](a_,Uk(x)- ak-2Uk-2(:_)) for k >__2,

N

f(x) = _ f(xl)_l(_), (2.15)
l=0

5



where

_(_) = _ + 2_iT1(x_)u1(_)+ _ 2_
k=2

(2.16)

with _k defined in (2.5).

Setting z = xj_½ in (2.16)

(AN)jz : _t(xj_½), 0 < £ < N, 1 < j < N. (2.17)

Thus we have outlined two procedures to get f(xj_½) from f(xj), one uses the FFT and

another uses matrix vector multiplications.

We are now ready to discuss the reconstruction operator 7£(. ;f-_. Note that in the

beginning of the solution process (1.3), we only have the values __½, j = 1,..., N, thus we

need another piece of information in order to define uniquely the N-th degree polynomial

f(x). This piece of information is provided by the boundary condition. For simplicity, we

assume that the boundary condition is of the form

/(1) =/(xo) =/o. (2.18)

The reconstruction is done in two steps. Define first a (N- 1)-th polynomial fN-l(x)

which collocatesf(a:) at {xj_½}N=_ , i.e. fN-_(=j_½) = f(xj_½), I <_ j < N, it is readily

N'-I

verified that

where

where

2 N

_kN
j=1

k=O

(2.19)

Alternatively we have

_/_ is same as in (2.10).

/V'-I

k=O

(2.20)

(2.21)

bk ck
= -_, k = N- 2, N-l,

1

bj, = _(ekck -- C_+_), o < ;: < N - 3. (2.22)
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Now, by Corollary 1
N-1

/N_I(_)= _ b_u_(_) (2.23)
k=0 CTk

is a polynomial of degree N - 1 such that A/N-1 = fN-1.

Generally, IN-I(_) does not satisfy the boundary condition (2.18). There are two ways

to modify fN-l(m) so that the boundary condition (2.18) is satisfied. In the first way we can

add to fN_l(X) an N-th degree polynomial Q(z) such that

and

Q(xj_½) -- 0, 1 _<j < N,

f._l(_) + Q(z) = fo.

It can be verified that in order to satisfy (2.24)

= ((1-

Let f(z) be the sum of fN-l(z) and Q(x),

f(m) = fN_l(x) -F c ((1 - m')T_v(m))'

= fN__(x) - c[xT_vCm) -F N'TN(x)].

(2.24)

(2.25)

(2.28)

(2.27)

The last equality follows from the Chebyshev equation, and the constant c is now deter-

mined by the condition f(zo) = fo, i.e.

1

c = - 2N------_ (f0 - fz__(1)) • (2.28)

Finally given f(zi_½), j = 1,...,N and fo we can get

f(z,) = fN_,(z,) - c [z,T_(z,) + N2TN(X.,)], i = 0,... ,N

where f___(ah) can be evaluated from (2.23) by using the FFT.

Note that in this procedure we change the values of fN-l(x_) at all the grid points.

(2.29)



Denote by RN the (N -{- 1) x (N + 1) matrix transforming fo and f(xj_½), 1 < j _< N

to f(xy) , 0 < j < N, i.e.

(f(Xo),''',f(XN)) T = RN (f(xo),f(x½),...,I(XN__))T (2.30)

As before we can write RN explicitly. Equation (2.19) can be rewritten as

N

:,_,(x)= S]:(xj-,,-)_(_), (2.31)
j=l

where hj(zk_½) = 6j_, and hi(x) are polynomials of degree N- 1; explicitly

_(m) = (_l)i+lNsin ((j - _)__)1_r xTN(x)-xj_½" (2.32)

It can be shown that _i(x) is the cell averaged polynomial of

N-1

hj(_): _C_u_(_) (2.33)
k=0

with Ak defined as

=

i

I

?

1

Ak = TaTk(x__½), if k = N- 2, N- 1

1

Ak -- Nak(Tk(x__½)___ - Tk+2(xj___)),.,-- if 0 _< k < N- 3.

As a result of (2.31) and (2.33) polynomial fiv-l(x) takes the form

IV-1

.i=1

and by (2.27)

f(x)=f_-1(_)---'1 (fo - fly-l(1))((1 - x2)T_,(x)) '
2N 2

Using (2.31) we get

f(_)
N

= _C/(,j_½)hA,)- --
./=I

" [-- _2 i(_s-_) h_(_)
j=l

I(N )2N_ :0-S]/(-___)h_(1)((1--_)T:,(,)) '
j=l

hi(l) ] /Co ((1 x')T_(x))'+ --_ ((I- m2)T'_'(m))' 2N'

(2.34)

(2.35)

(2.36)
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Substituting x = x_into (2.36) gives

61j, if i = O,
- _-'_N((1 -- m_)TJc(zi))', if j = O,

h'l
hi(x,) + _ ((1 - x_)T1v(z,))', 1 < i,j < N.

To summarize we state

Lemma 2 Let f(x) = T_(. ;]) be the N-th polynomial defined in (_._7) then

(Af)(xj_½) = f(zj_½) for 1 <_j <_N.

(2.37)

(2.38)

A different way to modify f_v-l(x) in (2.23), in order to satisfy the boundary condition

(2.18), is to add to it a polynomial Ql(x) of degree N such that the point values fN-l(x,)

remain unchanged and the new polynomial satisfies the boundary condition. Thus instead

of (2.27) we define

f(x) = fN-l(x) + (.to -- fu-l(1))(1 + x)T_r(x ) (2.39)
2N 2

Computationally (2.39) is simpler than (2.23) (2.27). However, note that in this case

# (2.40)

which is in contrast to (2.38). The matrix corresponding to (2.40) can be formed similarly

as in (2.37).

3 Cell Averaging Chebyshev (CAC) Method and

Linear Stability

In this section we will establish the stability of the Cell Averaging Methods, presented in

Section 2, when applied to a first order scalar hyperbolic equation. It is tempting to try to

obtain stability in the L 1 norm because of the way the method (1.3) is presented. However

we will only give the stability estimate based on a weighted Chebyshev norm.



Considerthe initial boundary valueproblem of the scalar hyperbolic equation

u,=u,,, xe [-I,1],u(x,0)= U0(x),
u(1,t) = o.

(3.1)

The cell averaged form of (3.1) is

0- 1

_:(x, t) + h,(x)- hl(_) [U(h2(_), t) - V(hl(_), t)] = 0, (3.2)

where hi(x) and h_(x) are defined in (2.2).

We followthe notation (1.3).Let the N-th degree polynomial _(x,t) be the approxima-

tion to (3.2). Our aim is to find the error equation for 7_(.; _) defined either by (2.27) or

(2.39)./,F_om(1.3)

_(x,_ + _) = .4E_(_,_). (3.3)

Applying the reconstruction operator T_ we get

7_(x, t + r) = 7_AET_(x,t) (3.4)

/,From equation (3.4) it is clear that T_2 satisfies exactly the equation

0:Ra OT_a

Ot - COz q-r[(1--x2)TN] ' (3.5)

for the reconstruction procedure (2.27) and

87_ COT/_

cOt -- cOx + 7"1(1 + x)T k (3.6)

for (2.39). r and rl are quantities depending on time t.

Note that (3.6) is the error equatl"on for the Chebyshev collocation method. For a scalar

linear equation the CAC method corresponding to (3.6) is equivalent to the known collocation

method [2]. It remains to investigate the stability of (3.5). For simplicity, in the remainder

of this section we denote Y/_ by u. From the construction of T_ in section 2 we know that

u(z,t) satisfies the boundary condition in (3.1), i.e. u(1, t) = 0.

10



It is interesting to note from (3.6) that the CAC method with reconstruction operator

(2.27) is equivalent - for constant coefficient case - to the collocation method where the grid

points are the zeros of the polynomial

= (3.7)

Note that by using standard identities

Q(_)= -[=T_,(=)+N2T,,(=)]. (3.8)

The term _" in the right hand side of (3.5) is determined by the boundary condition

= _(1, t)=u(1, t) = 7_(1, t). In fact substituting m 1 in the equation (3.5) and noting that a,,

0 we get for r

r = u=(1,Q (3.9)
2N 2

An alternative expression can be obtained by equating the highest coefficient on both

sides of (3.5), thus if u is expanded as

N

then

=(=)= _,_T_(=)
k=0

1 O_2N

r = N(N + 1) 0t

Before stating the main stability result of this paper, we state the following lemma

(3.10)

(3.11)

Lemma 3 /f f(m) = _'_4N-1_k=0 akTk(z), then

N I [' I(=)

where ej is defined in (EIO}; zj 0 < j < N are the Chebyshev-Lobatto points.

(3.12)

Proof: see [3].

The main stability result follows from the following lemma

11



Lemma 4 Le_U(_,t) be the sol_t_o_ of @._) a_d _(_,t) = _ be t_e _pp_oz_atio_ to
reconst_ctio_ operator (_._7) or (f_.80), the_

0-_2n :

_+..t_(z_,t) and Burn {_ornthe points z_ = -i to _ to get

o_ _-S_+--t_¢(z,,_)= _ _ _ _- z_ (_._)

We treat the two terms in the right hand side of (3.14)separately.

By noting the exactness o{ the Gauss bobatto formula one ge_s

+• ,_,_.C_,_)_ +
I = _t_.,u

aad integration by par'_ yields _r .2,1 t)

We use age_n the Gauss Lobatto formula to get•_,u2(_,_)_ 2

4N"

i<_ 4/v

We turn now _o the second term in (3.14)

II = -'FN ,,r_ _:1 - _

12



or

7r N
II _rN2___ - _ 1 l + mj

iV _=o cJ 1 -- xj u(x_'t)TN(xj) - rg21r--'u'(l't)" (3.21)= N

Using (3.9) and (3.11) for T one gets

g (_N v _ 1 1 + zj _r__E_u2(1,t). (3.22)- u(xj,t)TN(xj) --
II=N+I Ot N _1-_ 2N _"

j=0

As ll--t-__u(x,t)TN(x) is a polynomial of degree less than 4N- 1, one gets using lemma 3

_=0 _ i - xj u(xJ't)TN(xj) = , I - x V_- x 2

where a2N isthe 2N coefficientin the expansion of _u(x, t)TN(x)

It can be easily verified that

fli 1--__ dx = _^--_UN,l--z

1 ^
a2N -- --_UN,

(3.24)

(3.25)

sO

N__ O_NII =-_r _N Ot

Using (3.19) and (3.26) we get

N ^ 0_IN

I + II __ --Tr-_-_UN--_

Substituting (3.27)into (3.i4)yields (3.13).

2N.Ui(1, t)" (3.26)

vr u_(1, t). (3.27)
4N

This completes the proof of the lemma.

Q.E.D.

We note that from Lemma 3

_ i I+ ::,_u2(::_,t)=i/__i+ x u2(x,t) _'^2
2N j=l _'j 1- x/ 2 1 1-x_ d_-'_uN(t)'

SO that we can finally state that

(3.28)

Theorem 1 Let u(x,t) = Tie be the solution of the GAG method with the reconstruction

ope_to_(_._7)o_(_.SO),then

i f_i+zu_(x,t)dz+ 2N-i ^_ i[',i+xu_(x,O)dz+
J-_i-xv_-_ 2 4(N+i)_uN(0<2J-_i-= i_-x 2

2N- I _r4_v(0)"
4(N + i)

(3.29)

13



4 Numerical Results

In this section we apply the CAC spectral method (1.3) to the one dimensional gas dynamics

equations. The time evolution is done by the Runge-Kutta type method. Each step of the

Runge-Kutta scheme is done as follows:

Fully Discretized CAC method
- : ±

Step 1: Reconstruction:

given _"j_½, j = 1, ... _N, we use the boundary condition and the matrix RN to find the

point values uj, j = 1,... N as suggested in (2.27) or (2.30);

Step 2: Solution in time:

_n+l
we update the values ,,j_½, j = 1,..., N using the forward scheme,

_, j =1,... N, (4.1)
3-½ "- U3'-½ Xj_ 1 -- Xj

where At is the time step.

The reconstruction operator RN yields spectrally accurate point value approximations

to the exact solutions if the exact solutions are smooth, thus fij_½, j = 1,...,N can be

expected to approximate their cell averages accurately. However, if the exact solutions are

discontinuous, the point values uj, j = 0_..., N obtained by RN will be oscillatory as the

result of the Gibbs phenomenon. In [1] we proposed a practical way to obtain essentially

nonoscillatory spectral reconstruction to a discontinuous function from its oscillatory Fourier

approximations. The key idea there is to augment the Fourier space by adding simple dis-

continuous functions whose locations and magnitudes of discontinuities are approximations

to those of the shock waves in the numerical solutions. In our computations of CAC method,

we extend this idea along the same line to obtain essentially nonoscillatory reconstructions.

The estimates on these reconstructions will be appearing in a separate work. We refer the

reader to ([1]) for further details.

Now consider the l_iemann problem for tile Euler equations for a polytropic gas

14



u,(x,O+ f.(u)= o,

whereU(x,t) andf(U)aredefinedas

(4.2)

U = (p,M,E) T, -1 _< x _< 1,

f(U)=qU+(O,P, qP) T, (4.3)

where

i 2
e = (7- 1)(E- _pq ),

with 7 = 1.4 and the initial conditions are as follows

M = pq, (4.4)

(PL, qL, PL)

(pR, qR, PR)

= (3.857143,2.629369, 10.33333) when x < -0.8,

= (1 + Esin5_rx, O, 1) when x > -0.8, (4.5)

where e = 0.2.

The solutions to (4.2) - (4.5) model the interaction between a moving shock wave and

disturbances. Note that in the right state of the density a sinuous perturbation of magnitude

E = 0.2 is superimposed upon a constant state. LFrom linear analysis it can be shown that

the disturbances will interact with the shock wave. A density wave of different frequency

and magnitude will emerge behind the shock wave. Also the disturbance in the density
o

field will perturb the velocity and pressure fields behind the shock wave. The numerical

solution of this Riemann problem mandates a high order scheme in order to capture the fine

structures in the solutions for a correct interpretation of the physical process. We test this

problem with second order MUSCL scheme [5] and third order point value version ENO finite

difference scheme [6] and the CAC spectral method proposed in this paper. Our numerical

results have shown clearly the advantage of a higher order numerical scheme for problems

with complicated structures.

Figure 1 - 3 show the density profiles obtained by the three methods mentioned above.

Figure 1 is the result using CAC spectral method. The solid lines are the solutions taken

15



from [6] using the third order ENO finite difference method with N = 800 which we take as

the exact solutions . Figure 2 and Figure 3 are the results with the second order MUSCL

scheme [5] and the third order ENO finite difference scheme respectively. In all three cases

we use the same amount of mesh points N - 220. All the results are plotted at the same

time t = 0.3.
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Figure 1: The CAC spectral method: density, N = 220, time t = 0.3. (+) - numerical
solutions, solid line - exact solutions.
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Figure 2: The second order MUSCL scheme: density, N = 220, time t = 0.3. (+) - numerical

solutions, solid line - exact solutions.
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Figure 3: The third order ENO scheme: density, N = 220, time t = 0.3. (+) - numerical
solutions, solid line - exact solutions.
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